Preparation, structural characterization and in vitro digestion analysis of soybean peptide-zinc chelate
-
摘要: 为开发安全且易吸收的富锌产品,提高大豆蛋白的利用价值,通过酶解大豆分离蛋白制备肽锌螯合物。以锌离子螯合能力为指标,采用单因素试验和正交试验优化大豆肽螯合锌的制备工艺,运用扫描电镜、傅里叶变换红外光谱对螯合前后的结构进行表征,通过体外模拟胃肠道消化评价其生物利用度。结果表明:酶解制备大豆肽的最优条件为pH 8.0、温度45 ℃、胰蛋白酶加酶量(以底物质量为基准)6%、底物质量分数5%、时间4 h;肽锌螯合的最优条件为肽锌质量比4∶1、温度60 ℃、pH 5.0、时间60 min,该条件下的锌螯合率可达82.22%;与锌配合后,大豆肽锌螯合物表面呈均匀疏松的微观结构,肽链中的羧基氧原子和氨基氮原子是锌和大豆肽相互作用的重要位点;体外模拟胃肠道消化结果发现大豆肽锌螯合物具有优于无机锌盐的胃肠溶解性和肠道透过率。优化制备的大豆肽锌螯合物可作为一种新型锌营养补充剂,具备较高的生物利用度和良好的应用前景。Abstract: Zinc is an essential trace element for human body.The lack of zinc can lead to immune dysfunction and slow growth.As a new zinc supplement, natural protein peptide-zinc chelates have great development potential because of their rich nutrition, high safety and easy absorption.Soybean is a high-quality protein resource, as well as a good material for preparing bioactive peptides.In order to develop safe and easily absorbable zinc-rich products and improve the utilization value of soybean protein, peptide-zinc chelate was prepared by enzymatic hydrolysis of soybean protein.Taking the zinc-chelating capacity as an index, the optimum preparation process of soybean peptide-zinc chelate was obtained by single factor experiment and orthogonal experiment.Scanning electron microscopy and Fourier transform infrared spectroscopy were used to characterize the structure.The bioavailability was evaluated by simulating gastrointestinal digestion in vitro.The results showed that the optimum conditions for preparation of soybean peptide by enzymatic hydrolysis were as follows: pH 8.0, enzymolysis temperature 45 ℃, trypsin dosage 6%(based on the quality of substrate), substrate mass fraction 5%, time 4 h.The optimum conditions for peptide chelating zinc were peptide-zinc mass ratio of 4∶1, temperature 60 ℃, pH 5.0 and time 60 min.Under these conditions, the chelation rate of zinc reached 82.22%.The surface of soybean peptide-zinc chelate was uniform and loose, the carboxyl oxygen and amino nitrogen atoms in the peptide chain were the important interaction sites between zinc and soybean peptide.The results of in vitro simulation of gastrointestinal digestion showed that the dissolution rates of soybean peptide-zinc chelates in stomach and intestinal tract were 92.85% and 54.34%, respectively, and the highest intestinal permeability was 51.02%, both of which were higher than those of inorganic zinc salts.The results indicate that soybean peptide zinc chelates performed better retention and absorption characteristics than inorganic zinc salt.The soybean peptide-zinc chelate prepared in this study can be used as a new zinc nutritional supplement, with good bioavailability and high development prospect.
-
-
[1] MAARES M, HAASE H.A guide to human zinc absorption: general overview and recent advances of in vitro intestinal models[J].Nutrients, 2020, 12(3): 762.
[2] MARET W, SANDSTEAD H H.Zinc requirements and the risks and benefits of zinc supplementation[J].Journal of trace elements in medicine and biology, 2006, 20(1): 3-18.
[3] WANG C, WANG C, LI B, et al.Zn(II)chelating with peptides found in sesame protein hydrolysates: identification of the binding sites of complexes[J].Food chemistry, 2014, 165: 594-602.
[4] UDECHUKWU M C, DOWNEY B, UDENIGWE C C.Influence of structural and surface properties of whey-derived peptides on zinc-chelating capacity, and in vitro gastric stability and bioaccessibility of the zinc-peptide complexes[J].Food chemistry, 2018, 240: 1227-1232.
[5] ZHANG Z R, ZHOU F B, LIU X L, et al.Particulate nanocomposite from oyster(Crassostrea rivularis)hydrolysates via zinc chelation improves zinc solubility and peptide activity[J].Food chemistry, 2018, 258: 269-277.
[6] UDECHUKWU M C, COLLINS S A, UDENIGWE C C.Prospects of enhancing dietary zinc bioavailability with food-derived zinc-chelating peptides[J].Food & function, 2016, 7(10): 4137-4144.
[7] 杜振亚, 陈复生.大豆蛋白保健功能研究进展[J].食品与机械, 2014, 30(6): 247-250. [8] 楼钰航, 徐红艳, 夏新秀, 等.不同来源多肽—矿物质螯合物活性研究进展[J].食品与机械, 2020, 36(11): 211-216. [9] CHEN C, SUN-WATERHOUSE D, ZHANG Y, et al.The chemistry behind the antioxidant actions of soy protein isolate hydrolysates in a liposomal system: their performance in aqueous solutions and liposomes[J].Food chemistry, 2020, 323: 126789.
[10] 郑英敏, 袁杨, 苏东晓, 等.大豆多肽-锌螯合物的制备工艺优化及其结构表征[J].食品工业科技, 2020, 41(14): 160-165. [11] 高素蕴, 潘思轶, 郭康权.大豆分离蛋白水解物螯合锌(Ⅱ)的合成与制备[J].食品科学, 2003, 24(10): 117-120. [12] 王晴, 邵珺, 李勇勇, 等.鲐鱼暗色肉肽锌螯合物的制备及结构表征[J].食品与生物技术学报, 2021, 40(5): 78-87. [13] 王进, 王刚, 罗丽娟, 等.茚三酮比色法测定聚谷氨酸含量的研究[J].食品与发酵科技, 2019, 55(2): 98-101. [14] WANG C, LI B, AO J.Separation and identification of zinc-chelating peptides from sesame protein hydrolysate using IMAC-Zn2+ and LC-MS/MS[J].Food chemistry, 2012, 134(2): 1231-1238.
[15] WANG C, LI B, WANG B, et al.Degradation and antioxidant activities of peptides and zinc-peptide complexes during in vitro gastrointestinal digestion[J].Food chemistry, 2015, 173: 733-740.
[16] WANG R C, HE S H, XUAN Y F, et al.Preparation and characterization of whey protein hydrolysate-Zn complexes[J].Journal of food measurement and characterization, 2020, 14(1): 254-261.
[17] WU W F, LI B F, HOU H, et al.Identification of iron-chelating peptides from Pacific cod skin gelatin and the possible binding mode[J].Journal of functional foods, 2017, 35: 418-427.
[18] KRISTINSSON H G, RASCO B A.Fish protein hydrolysates: production, biochemical, and functional properties[J].Critical reviews in food science and nutrition, 2000, 40(1): 43-81.
[19] 王勇, 李水明, 何曼文, 等.蛋白质胰蛋白酶水解过程双位点漏切肽段的质谱鉴定[J].质谱学报, 2013, 34(1): 29-34. [20] 张娅俐, 洪晶, 张棚, 等.胰蛋白酶水解羊血清蛋白工艺研究[J].西北民族大学学报(自然科学版), 2022, 43(1): 40-46. [21] WANG X, ZHOU J, TONG P S, et al.Zinc-binding capacity of yak casein hydrolysate and the zinc-releasing characteristics of casein hydrolysate-zinc complexes[J].Journal of dairy science, 2011, 94(6): 2731-2740.
[22] 赵薇, 李涛, 王明, 等.豆粕水解多肽与锌螯合物的制备方法研究[J].食品研究与开发, 2013, 34(19): 133-136. [23] 富天昕, 张舒, 盛亚男, 等.绿豆多肽锌螯合物的制备及其结构与体外消化的分析[J].食品科学, 2020, 41(4): 59-66. [24] 原洪, 柴丽琴, 王立霞, 等.花椒籽肽-铁螯合物的制备及其理化性质[J].食品与发酵工业, 2018, 44(6): 164-171. [25] HUANG G R, REN Z Y, JIANG J X.Separation of iron-binding peptides from shrimp processing by-products hydrolysates[J].Food and bioprocess technology, 2011, 4(8): 1527-1532.
[26] CHEN D, LIU Z Y, HUANG W Q, et al.Purification and characterisation of a zinc-binding peptide from oyster protein hydrolysate[J].Journal of functional foods, 2013, 5(2): 689-697.
[27] LI J P, GONG C, WANG Z Y, et al.Oyster-derived zinc-binding peptide modified by plastein reaction via zinc chelation promotes the intestinal absorption of zinc[J].Marine drugs, 2019, 17(6): 341.
[28] 柯枭, 胡晓, 杨贤庆, 等.罗非鱼皮胶原蛋白肽-锌螯合物的制备及结构表征与体外消化分析[J].食品与发酵工业, 2021, 47(14): 38-44. -
期刊类型引用(4)
1. 牛家乐,田青,伊艳杰,惠明. 酶解法制备花生肽及其抗氧化活性分析. 河南工业大学学报(自然科学版). 2024(04): 19-28 . 百度学术
2. 王波,肖珊,蔡燕雪,陈璇,王际辉. 科研成果与蛋白质化学实验教学融合——酪蛋白肽-锌螯合物的合成与表征. 广东化工. 2024(18): 201-203 . 百度学术
3. 梅洁,李芳,王晓雯,马慧,邱晓柔,刘思悦,孔令明. 核桃谷蛋白多肽及其肽锌螯合物的分离纯化、鉴定与结合位点分析. 食品科学. 2024(22): 2208-2216 . 百度学术
4. 刘凌云. 国内外多肽金属离子螯合物的研究进展. 化工设计通讯. 2023(08): 32-34 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 116
- HTML全文浏览量: 4
- PDF下载量: 22
- 被引次数: 4