张玉荣, 邓毅浩, 褚洪强, 吴琼, 张咚咚. 基于高光谱成像技术的大豆霉变等级识别方法研究[J]. 河南工业大学学报自然科学版, 2023, 44(6): 105-113,131. DOI: 10.16433/j.1673-2383.2023.06.014
    引用本文: 张玉荣, 邓毅浩, 褚洪强, 吴琼, 张咚咚. 基于高光谱成像技术的大豆霉变等级识别方法研究[J]. 河南工业大学学报自然科学版, 2023, 44(6): 105-113,131. DOI: 10.16433/j.1673-2383.2023.06.014
    ZHANG Yurong, DENG Yihao, CHU Hongqiang, WU Qiong, ZHANG Dongdong. Research on soybean mold level identification based on hyperspectral imaging technology[J]. Journal of Henan University of Technology(Natural Science Edition), 2023, 44(6): 105-113,131. DOI: 10.16433/j.1673-2383.2023.06.014
    Citation: ZHANG Yurong, DENG Yihao, CHU Hongqiang, WU Qiong, ZHANG Dongdong. Research on soybean mold level identification based on hyperspectral imaging technology[J]. Journal of Henan University of Technology(Natural Science Edition), 2023, 44(6): 105-113,131. DOI: 10.16433/j.1673-2383.2023.06.014

    基于高光谱成像技术的大豆霉变等级识别方法研究

    Research on soybean mold level identification based on hyperspectral imaging technology

    • 摘要: 大豆在储运过程中容易发生霉变,为快速无损检测储藏大豆的霉变情况,提高大豆品质检测效率,通过高光谱成像系统采集不同霉变等级大豆样本信息,使用标准正态化(SNV)、多元散射校正(MSC)、一阶求导(1ST)和二阶求导(2ND)对样本光谱数据进行预处理,通过连续投影算法(SPA)和竞争性自适应加权算法(CARS)提取光谱特征,使用颜色矩中前3个阶矩作为颜色特征,并将光谱特征和颜色特征结合,分别建立支持向量机(SVM)和偏最小二乘回归(PLSR)识别模型。结果表明:使用1ST处理光谱数据,利用CARS提取的19个光谱特征,结合9个颜色特征建立的SVM模型的性能最好,其测试集准确率、精确率、召回率和F1(精确率和召回率的调和平均值)分别为98.13%、98.25%、98.15%和98.20%,对等级1、2、3、4的识别正确率分别为100%、100%、92.60%和100%,仅存在2个误判样本。高光谱成像技术对不同霉变等级大豆籽粒有较强识别能力,为快速无损检测大豆籽粒霉变等级提供了理论依据。

       

      Abstract: Soybeans are prone to mold during storage and transportation. In order to quickly and non-destructively detect the mold status of stored soybeans and improve the efficiency of quality inspection, this experiment employed a hyperspectral imaging system to collect samples of soybeans with different levels of mold. The spectral data of the samples were preprocessed using SNV, MSC, 1ST, and 2ND. Spectral features were extracted using the SPA and the CARS algorithm. Color features were obtained by calculating the first three moments of color moments. SVM and PLSR models were separately established by combining the spectral features and color features. The results showed that the SVM model, built using 1ST-processed spectral data, 19 spectral features extracted by CARS, and 9 color features, achieved the best performance. The SVM model achieved accuracy, precision, recall, and F1 score of 98.13%, 98.25%, 98.15%, and 98.20%, respectively, on the test set. The recognition accuracy for each mold level was 100%, 100%, 92.6%, and 100%, with only 2 misclassified samples. This model demonstrated strong identification capabilities for soybeans with different levels of mold and provided a theoretical basis for rapid and non-destructive detection of mold levels in soybean kernels.

       

    /

    返回文章
    返回