The pyrolysis characteristics of wheat flour on-line flour flow were analyzed based on thermogravimetric method
-
摘要: 加工精度是小麦粉重要的质量指标之一,为探究热重法评价小麦粉加工精度的可行性,利用热重分析仪测定35种在线粉流的热解行为,基于热解动力学方程获得在线粉流热解阶段 Ⅱ (238~338 ℃)的动力学参数(活化能、指前因子和反应级数),并通过回归分析建立阶段 Ⅱ 活化能与麸星含量、热解 Ⅲ 阶段后的残余质量分数与灰分含量之间的相关性。结果表明:不同制粉系统的在线粉流热解 Ⅱ 阶段的活化能与麸星含量之间呈非线性负相关(R2=0.920 1);热解 Ⅲ 阶段结束后的残余质量分数与灰分含量之间呈线性正相关,R2最高可达0.920 7。麸星含量是影响在线粉流热解特性的主要因素;热重分析法适用于评价麸星含量较高小麦粉的加工精度。Abstract: Processing accuracy is one of the important quality indicators of wheat flour. In order to explore the feasibility of evaluating the processing accuracy of wheat flour by thermogravimetric method, the pyrolysis behavior of 35 kinds of on-line flour flow from different milling systems was measured by thermogravimetric analyzer. The kinetic parameters of on-line flour flow in stage Ⅱ (238-338 ℃) of thermal decomposition, including activation energy, pre-exponential factor, and reaction order, were obtained based on the thermal decomposition kinetics equation. The correlation between activation energy and bran content in on-line flour flow pyrolysis stage Ⅱ, residual mass fraction and ash content after online flour flow pyrolysis stage Ⅲ was established by regression analysis. There was a nonlinear negative correlation between the activation energy of pyrolysis stage Ⅱ and the content of bran star (R2=0.920 1). There was a linear positive correlation between the residual mass fraction of on-line flour flow after stage Ⅲ of thermal decomposition and the ash content in different milling systems, with the highest correlation coefficient R2 being 0.920 7. Bran content is one of the main factors affecting the pyrolysis characteristics of on-line flour flow. Thermogravimetric analysis method is suitable for evaluating the processing accuracy of wheat flour with high bran content.
-
-
[1] 谢启源, 陈丹丹, 丁延伟. 热重分析技术及其在高分子表征中的应用[J]. 高分子学报, 2022, 53(2): 193-210. [2] 周龙龙, 牛增元, 孙忠松, 等. 热重分析法快速测定饲料中淀粉含量[J]. 中国口岸科学技术, 2022, 4(5): 34-38. [3] GB/T 4498.2—2017. 橡胶 灰分的测定 第2部分:热重分析法[S]. [4] LIU J, PAN Y F, YAO C H, et al. Determination of ash content and concomitant acquisition of cell compositions in microalgae via thermogravimetric (TG) analysis[J]. Algal research, 2015, 12: 149-155.
[5] 邓卫星, 韩松, 彭锦雯, 等. 页岩/HDPE复合材料的非等温热分解动力学研究[J]. 当代化工研究, 2021(21): 36-38. [6] 王芷若, 王海仙, 闫朋, 等. 基于热分析法快速鉴别纺织品纤维的含量[J]. 中国口岸科学技术, 2022, 4(6): 35-42. [7] 崔丽伟, 展海军, 张佳佳, 等. 热重分析法测定大米中淀粉含量[J]. 中国粮油学报, 2017, 32(9): 167-170. [8] 苑春苗, 李畅, 李刚, 等. 氮气气氛下玉米淀粉热分解动力学参数[J]. 东北大学学报(自然科学版), 2012, 33(4): 584-587. [9] MANSARAY K G, GHALY A E. Determination of kinetic parameters of rice husks in oxygen using thermogravimetric analysis[J]. Biomass and bioenergy, 1999, 17(1): 19-31.
[10] 王爱华, 郑学玲. 小麦制粉过程前、中、后路粉品质及流变学特性差异分析[J]. 河南工业大学学报(自然科学版), 2021, 42(1): 8-14. [11] 张黎利. LabMill全自动磨粉机不同粉路面粉品质差异性研究[J]. 粮油与饲料科技, 2022(3): 17-22. [12] 王崇崇, 王晓曦, 马森. 粒度对小麦粉及面制品品质影响的研究进展[J]. 粮食与油脂, 2017, 30(8): 8-10. [13] 冯婕, 温纪平, 张弘. 不同精度对小麦粉品质及其面团特性的研究[J]. 食品科技, 2021, 46(2): 118-123. [14] 汪桢. 麦麸膳食纤维对酸面团发酵及馒头品质的影响研究[D]. 郑州: 河南工业大学, 2022. [15] 张佳佳. 热重分析法同时测定粮食中主要成分含量[D]. 郑州: 河南工业大学, 2017. [16] 吴欣荣, 乔建江. 小麦淀粉的燃烧过程和热分析动力学分析[J]. 化学工程, 2023, 51(4): 62-67. [17] CEYLAN S, TOPÇU Y. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis[J]. Bioresource technology, 2014, 156: 182-188.
[18] 周一帆, 姚丛雪, 王靖文, 等. 大豆的热分解特性及其动力学探究[J]. 化工学报, 2020, 71(S2): 187-194. [19] LIANG R, LIANG Q Y, LI Z B, et al. Assessment of the thermal hazards and oxidization mechanism of coloured corn starch dust by TG-FTIR[J]. Journal of loss prevention in the process industries, 2021, 69: 104380.
[20] 田建珍, 温纪平. 小麦加工工艺与设备[M]. 北京: 科学出版社, 2011: 200. [21] LIU X X, YU L, XIE F W, et al. Kinetics and mechanism of thermal decomposition of cornstarches with different amylose/amylopectin ratios[J]. Starch - stärke, 2010, 62(3/4): 139-146.
[22] 王晓曦, 贾爱霞, 于中利. 小麦制粉过程中矿物质元素的分布情况[J]. 现代面粉工业, 2012, 26(1): 23-26. [23] 肖卓炳, 郭瑞轲, 郭满满. 麦秆的热解特性研究及其动力学分析[J]. 化学世界, 2013, 54(12): 705-709. [24] 胡荣祖, 高胜利, 赵凤起. 热分析动力学[M]. 2版. 北京: 科学出版社, 2008. [25] YU H, YAO C X, ZHOU Y F, et al. Study on the pyrolysis kinetics of corn and qualification of pyrolysis products[J]. Combustion science and technology, 2023, 195(6): 1184-1201.
[26] 郑学玲, 徐微微, 李利民. 不同系统面粉Zeleny沉降值和SDS沉降值的比较研究[J]. 河南工业大学学报(自然科学版), 2007, 28(4): 22-25. [27] 曹乾坤, 王茜, 王睿. 玉米秸秆和海藻共热解特性研究[J]. 新能源进展, 2024, 12(1): 98-105. [28] 刘兴训. 淀粉及淀粉基材料的热降解性能研究[D]. 广州: 华南理工大学, 2011. [29] 赵吉顺, 王斌, 张自阳, 等. 不同出粉点小麦粉、面片及馒头色泽分析[J]. 食品研究与开发, 2021, 42(14): 21-25. [30] 张喜坤, 薛伟, 张雪一. 混合水稻玉米秸秆热解特性研究及动力学分析[J]. 太阳能学报, 2021, 42(11): 410-414. -
期刊类型引用(1)
1. 陈卫东,刘超,范冰冰,丰秋楠,丁俊丹,何为. 基于贝叶斯优化XGBoost的小麦粉麸星含量预测. 河南工业大学学报(自然科学版). 2025(01): 105-113 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 330
- HTML全文浏览量: 6
- PDF下载量: 29
- 被引次数: 1