Citation: | KANG Ziyue, MENG Ning, LIU Ming, LIU Yanxiang, JIANG Ping, TAN Bin. Comparison and analysis of small intestinal metabolites of peeled and whole grain oats[J]. Journal of Henan University of Technology(Natural Science Edition), 2024, 45(3): 49-57. DOI: 10.16433/j.1673-2383.202312120001 |
[1] |
谭斌. 全谷物营养健康与加工[M]. 北京: 科学出版社, 2021.
|
[2] |
KAMAL N, TSARDAKAS RENHULDT N, BENTZER J, et al. The mosaic oat genome gives insights into a uniquely healthy cereal crop[J]. Nature, 2022, 606: 113-119.
|
[3] |
ORTIZ DE ERIVE M, HE F L, WANG T, et al. Development of β-glucan enriched wheat bread using soluble oat fiber[J]. Journal of cereal science, 2020, 95: 103051.
|
[4] |
KOC F, SUGRUE I, MURPHY K, et al. The microbiome modulating potential of superheated steam (SHS) treatment of dietary fibres[J]. Innovative food science & emerging technologies, 2022, 80: 103082.
|
[5] |
CHAKRABORTY P, WITT T, HARRIS D, et al. Texture and mouthfeel perceptions of a model beverage system containing soluble and insoluble oat bran fibres[J]. Food research international, 2019, 120: 62-72.
|
[6] |
冯晶晶. 沙棘叶超微茶粉理化性质及体外消化性能研究. 太原: 中北大学, 2023.
|
[7] |
BAI X, ZHANG M L, ZHANG Y Y, et al. Effect of steam, microwave, and hot-air drying on antioxidant capacity and in vitro digestion properties of polyphenols in oat bran[J]. Journal of food processing and preservation, 2021, 45(12):e16013.
|
[8] |
WANG X, YE A Q, DAVE A, et al. Structural changes in oat milk and an oat milk-bovine skim milk blend during dynamic in vitro gastric digestion[J]. Food hydrocolloids, 2022, 124: 107311.
|
[9] |
BAI J Y, LI T T, ZHANG W H, et al. Systematic assessment of oat β-glucan catabolism during in vitro digestion and fermentation[J]. Food chemistry, 2021, 348: 129116.
|
[10] |
QIN C, LI Y Q, ZHANG Y Z, et al. Insights into oat polyphenols constituent against advanced glycation end products mechanism by spectroscopy and molecular interaction[J]. Food bioscience, 2021, 43: 101313.
|
[11] |
TOSH S M, BORDENAVE N. Emerging science on benefits of whole grain oat and barley and their soluble dietary fibers for heart health, glycemic response, and gut microbiota[J]. Nutrition reviews, 2020, 78(S1): 13-20.
|
[12] |
LI L, BAIMA C M, JIANG J Y, et al. In vitro gastric digestion and emptying of tsampa under simulated elderly and young adult digestive conditions using a dynamic stomach system[J]. Journal of food engineering, 2022, 327: 111054.
|
[13] |
ZHANG P, IQBAL S, DENG R P, et al. Impact of elderly gastrointestinal alterations on gastric emptying and enzymatic hydrolysis of skim milk: an in vitro study using a dynamic stomach system[J]. Food chemistry, 2023, 402: 134365.
|
[14] |
王雪,潘兆平,陈嘉序,等. 茶枝柑与不同品种温州蜜柑果皮的非靶向代谢组学比较与分析. 食品科学,1-15.http://kns.cnki.net/kcms/detail/11.2206.TS.20231008.1617.002.html.
|
[15] |
ZHU R T, XU H Y, CAI H W, et al. Effects of cereal bran consumption on cardiometabolic risk factors: a systematic review and meta-analysis[J]. Nutrition, metabolism, and cardiovascular diseases, 2023, 33(10): 1849-1865.
|
[16] |
TUFAIL T, AIN H B U, SAEED F, et al. A retrospective on the innovative sustainable valorization of cereal bran in the context of circular bioeconomy innovations[J]. Sustainability, 2022, 14(21): 14597.
|
[17] |
GARCÍA-PÉREZ P, GIUBERTI G, SESTILI F, et al. The functional implications of high-amylose wholegrain wheat flours: an in vitro digestion and fermentation approach combined with metabolomics[J]. Food chemistry, 2023, 418: 135959.
|
[18] |
TU F, XIE C Y, LI H N, et al. Effect of in vitro digestion on chestnut outer-skin and inner-skin bioaccessibility: the relationship between biotransformation and antioxidant activity of polyphenols by metabolomics[J]. Food chemistry, 2021, 363: 130277.
|
[19] |
CAI T W, YE H T, JIANG H Y, et al. Stevioside targets the NF-κB and MAPK pathways for inhibiting inflammation and apoptosis of chondrocytes and ameliorates osteoarthritis in vivo[J]. International immunopharmacology, 2023, 115: 109683.
|
[20] |
LING H, ZHOU L, JIA X B, et al. Polyporenic acid C induces caspase-8-mediated apoptosis in human lung cancer A549 cells[J]. Molecular carcinogenesis, 2009, 48(6): 498-507.
|
[21] |
李丹. 食品乳化剂在冰淇淋制作中的应用[J]. 食品安全导刊, 2021(22): 168-169.
|
[21] |
ERRICHIELLO F, D'AMATO M, GAMBUTI A, et al. Oleanolic acid: a promising antidiabetic metabolite detected in Aglianico grape pomace[J]. Journal of functional foods, 2023, 104: 105548.
|
[22] |
SUWANNASANG S, THUMTHANARUK B, ZHONG Q X, et al. The improved properties of zein encapsulating and stabilizing Sacha inchi oil by surfactant combination of lecithin and tween 80[J]. Food and bioprocess technology, 2021, 14(11): 2078-2090.
|
[22] |
DO NASCIMENTO P G G, LEMOS T L G, ALMEIDA M C S, et al. Lithocholic acid and derivatives: antibacterial activity[J]. Steroids, 2015, 104: 8-15.
|
[23] |
YANG Y, HE J, SUO Y, et al. Anti-inflammatory effect of taurocholate on TNBS-induced ulcerative colitis in mice[J]. Biomedicine & pharmacotherapy, 2016, 81: 424-430.
|
[23] |
杨杨. 复合骨汤粉制备条件研究. 广州: 华南理工大学, 2022.
|
[24] |
DINICOLANTONIO J J, O'KEEFE J H, LUCAN S C. Added fructose: a principal driver of type 2 diabetes mellitus and its consequences[J]. Mayo clinic proceedings, 2015, 90(3): 372-381.
|
[25] |
WANG G H, CHEN H F, HUANG M H, et al. Methyl protodioscin induces G2/M cell cycle arrest and apoptosis in HepG2 liver cancer cells[J]. Cancer letters, 2006, 241(1): 102-109.
|
[26] |
ZHANG R L, GILBERT S, YAO X S, et al. Natural compound methyl protodioscin protects against intestinal inflammation through modulation of intestinal immune responses[J]. Pharmacology research & perspectives, 2015, 3(2): e00118.(责任编辑 姚玮华) (上接第40页)
|